Azure AI Search
Overview
AI-powered information retrieval platform by Microsoft Azure. Through Langdock’s integration, you can access and manage Azure AI Search directly from your conversations.
Authentication: API Key Category: AI & Search Availability: All workspace plans
Available Actions
Search Documents
azureaisearch.searchDocuments
Searches the database for the most relevant information based on the query provided
Requires Confirmation: No
Parameters:
query(VECTOR, Required): Vector query for semantic search
Output:
Returns search results with the following structure:
value: Array of search result objects containing:@search.score: Relevance score@search.highlights: Highlighted text snippetsField values from the indexed documents
@odata.count: Total number of results@odata.nextLink: Link to next page of results (if available)
List Datasets
azureaisearch.listDatasets
Lists all datasets in a BigQuery project
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project ID containing the datasets
Output:
Returns an array of datasets with their IDs, names, and metadata
List Tables
azureaisearch.listTables
Lists all tables in a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID containing the tables
Output:
Returns an array of tables with their IDs, names, and metadata
Get Table Schema
azureaisearch.getTableSchema
Gets the schema information for a specific BigQuery table
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID containing the tabletableId(TEXT, Required): The table ID to get schema information for
Output:
Returns the table schema including field names, types, and constraints
Execute Query
azureaisearch.executeQuery
Executes a SQL query in BigQuery and returns the results
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project ID to execute the query inquery(MULTI_LINE_TEXT, Required): The SQL query to execute in BigQueryuseLegacySql(BOOLEAN, Optional): Whether to use legacy SQL syntax (default: false for Standard SQL)
Output:
jobReference: Job reference informationtotalRows: Total number of rows in the resultrows: Array of result rows containing field valuesschema: Schema of the result fieldsjobComplete: Whether the job completed successfully
Get Table Data
azureaisearch.getTableData
Retrieves actual data rows from a BigQuery table
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID containing the tabletableId(TEXT, Required): The table ID to retrieve data frommaxResults(NUMBER, Optional): Maximum number of rows to return (optional)
Output:
Returns table data with rows and schema information
Create Dataset
azureaisearch.createDataset
Creates a new dataset in BigQuery
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The ID for the new datasetdescription(TEXT, Optional): Optional description for the datasetlocation(TEXT, Optional): Geographic location for the dataset (e.g., US, EU)
Output:
Returns the created dataset with its ID and metadata
Create Table
azureaisearch.createTable
Creates a new table in a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID to create the table intableId(TEXT, Required): The ID for the new tabledescription(TEXT, Optional): Optional description for the tableschema(MULTI_LINE_TEXT, Optional): Table schema as JSON array of field objects (optional)
Output:
Returns the created table with its ID and schema information
Insert Table Data
azureaisearch.insertTableData
Inserts data rows into a BigQuery table
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID containing the tabletableId(TEXT, Required): The table ID to insert data intorows(MULTI_LINE_TEXT, Required): JSON array of row objects to insertignoreUnknownValues(BOOLEAN, Optional): Whether to ignore unknown values in the dataskipInvalidRows(BOOLEAN, Optional): Whether to skip rows that contain invalid data
Output:
Returns insertion results with success/failure information
Get Dataset Info
azureaisearch.getDatasetInfo
Gets detailed information about a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID to get information for
Output:
Returns dataset information including creation time, location, and access controls
Common Use Cases
Data Management — Manage and organize your Azure AI Search data
Automation — Automate workflows with Azure AI Search
Reporting — Generate insights and reports
Integration — Connect Azure AI Search with other tools
Best Practices
Support
For additional help with the Azure AI Search integration, contact [email protected]

