Azure AI Search

Overview

AI-powered information retrieval platform by Microsoft Azure. Through Langdock’s integration, you can access and manage Azure AI Search directly from your conversations.

Authentication: API Key Category: AI & Search Availability: All workspace plans


Available Actions

Search Documents

azureaisearch.searchDocuments

Searches the database for the most relevant information based on the query provided

Requires Confirmation: No

Parameters:

  • query (VECTOR, Required): Vector query for semantic search

Output:

  • Returns search results with the following structure:

    • value: Array of search result objects containing:

      • @search.score: Relevance score

      • @search.highlights: Highlighted text snippets

      • Field values from the indexed documents

    • @odata.count: Total number of results

    • @odata.nextLink: Link to next page of results (if available)


List Datasets

azureaisearch.listDatasets

Lists all datasets in a BigQuery project

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID containing the datasets

Output:

  • Returns an array of datasets with their IDs, names, and metadata


List Tables

azureaisearch.listTables

Lists all tables in a BigQuery dataset

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID

  • datasetId (TEXT, Required): The dataset ID containing the tables

Output:

  • Returns an array of tables with their IDs, names, and metadata


Get Table Schema

azureaisearch.getTableSchema

Gets the schema information for a specific BigQuery table

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID

  • datasetId (TEXT, Required): The dataset ID containing the table

  • tableId (TEXT, Required): The table ID to get schema information for

Output:

  • Returns the table schema including field names, types, and constraints


Execute Query

azureaisearch.executeQuery

Executes a SQL query in BigQuery and returns the results

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID to execute the query in

  • query (MULTI_LINE_TEXT, Required): The SQL query to execute in BigQuery

  • useLegacySql (BOOLEAN, Optional): Whether to use legacy SQL syntax (default: false for Standard SQL)

Output:

  • jobReference: Job reference information

  • totalRows: Total number of rows in the result

  • rows: Array of result rows containing field values

  • schema: Schema of the result fields

  • jobComplete: Whether the job completed successfully


Get Table Data

azureaisearch.getTableData

Retrieves actual data rows from a BigQuery table

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID

  • datasetId (TEXT, Required): The dataset ID containing the table

  • tableId (TEXT, Required): The table ID to retrieve data from

  • maxResults (NUMBER, Optional): Maximum number of rows to return (optional)

Output:

  • Returns table data with rows and schema information


Create Dataset

azureaisearch.createDataset

Creates a new dataset in BigQuery

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID

  • datasetId (TEXT, Required): The ID for the new dataset

  • description (TEXT, Optional): Optional description for the dataset

  • location (TEXT, Optional): Geographic location for the dataset (e.g., US, EU)

Output:

  • Returns the created dataset with its ID and metadata


Create Table

azureaisearch.createTable

Creates a new table in a BigQuery dataset

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID

  • datasetId (TEXT, Required): The dataset ID to create the table in

  • tableId (TEXT, Required): The ID for the new table

  • description (TEXT, Optional): Optional description for the table

  • schema (MULTI_LINE_TEXT, Optional): Table schema as JSON array of field objects (optional)

Output:

  • Returns the created table with its ID and schema information


Insert Table Data

azureaisearch.insertTableData

Inserts data rows into a BigQuery table

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID

  • datasetId (TEXT, Required): The dataset ID containing the table

  • tableId (TEXT, Required): The table ID to insert data into

  • rows (MULTI_LINE_TEXT, Required): JSON array of row objects to insert

  • ignoreUnknownValues (BOOLEAN, Optional): Whether to ignore unknown values in the data

  • skipInvalidRows (BOOLEAN, Optional): Whether to skip rows that contain invalid data

Output:

  • Returns insertion results with success/failure information


Get Dataset Info

azureaisearch.getDatasetInfo

Gets detailed information about a BigQuery dataset

Requires Confirmation: No

Parameters:

  • projectId (TEXT, Required): The Google Cloud project ID

  • datasetId (TEXT, Required): The dataset ID to get information for

Output:

  • Returns dataset information including creation time, location, and access controls


Common Use Cases

  • Data Management — Manage and organize your Azure AI Search data

  • Automation — Automate workflows with Azure AI Search

  • Reporting — Generate insights and reports

  • Integration — Connect Azure AI Search with other tools


Best Practices

1

Getting Started

  • Enable the Azure AI Search integration in your workspace settings

  • Authenticate using API Key

  • Test the connection with a simple read operation

  • Explore available actions for your use case

2

Important Considerations

  • Ensure proper authentication credentials

  • Respect rate limits and API quotas

  • Review data privacy settings

  • Test operations in a safe environment first


chevron-rightTroubleshootinghashtag
Issue
Solution

Authentication failed

Verify your API Key credentials

Rate limit exceeded

Reduce request frequency

Data not found

Check permissions and data availability

Connection timeout

Verify network connectivity


Support

For additional help with the Azure AI Search integration, contact [email protected]envelope