Big Query
Overview
Google Cloud BigQuery data warehouse for analytics and machine learning. Through Langdock’s integration, you can access and manage BigQuery directly from your conversations.
Authentication: OAuth Category: Data & Analytics Availability: All workspace plans
Available Actions
List Datasets
bigquery.listDatasets
Lists all datasets in a BigQuery project
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project ID containing the datasets
Output: Returns an array of datasets with their IDs, names, and metadata
List Tables
bigquery.listTables
Lists all tables in a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID containing the tables
Output: Returns an array of tables with their IDs, names, and metadata
Get Table Schema
bigquery.getTableSchema
Gets the schema information for a specific BigQuery table
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID containing the tabletableId(TEXT, Required): The table ID to get schema information for
Output: Returns the table schema including field names, types, and constraints
Execute Query
bigquery.executeQuery
Executes a SQL query in BigQuery and returns the results
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project ID to execute the query inquery(MULTI_LINE_TEXT, Required): The SQL query to execute in BigQueryuseLegacySql(BOOLEAN, Optional): Whether to use legacy SQL syntax (default: false for Standard SQL)
Output: Returns query results with the following structure:
jobReference: Job reference informationtotalRows: Total number of rows in the resultrows: Array of result rows containing field valuesschema: Schema of the result fieldsjobComplete: Whether the job completed successfully
Get Table Data
bigquery.getTableData
Retrieves actual data rows from a BigQuery table
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID containing the tabletableId(TEXT, Required): The table ID to retrieve data frommaxResults(NUMBER, Optional): Maximum number of rows to return (optional)
Output: Returns table data with rows and schema information
Create Dataset
bigquery.createDataset
Creates a new dataset in BigQuery
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The ID for the new datasetdescription(TEXT, Optional): Optional description for the datasetlocation(TEXT, Optional): Geographic location for the dataset (e.g., US, EU)
Output: Returns the created dataset with its ID and metadata
Create Table
bigquery.createTable
Creates a new table in a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID to create the table intableId(TEXT, Required): The ID for the new tabledescription(TEXT, Optional): Optional description for the tableschema(MULTI_LINE_TEXT, Optional): Table schema as JSON array of field objects (optional)
Output: Returns the created table with its ID and schema information
Insert Table Data
bigquery.insertTableData
Inserts data rows into a BigQuery table
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID containing the tabletableId(TEXT, Required): The table ID to insert data intorows(MULTI_LINE_TEXT, Required): JSON array of row objects to insertignoreUnknownValues(BOOLEAN, Optional): Whether to ignore unknown values in the dataskipInvalidRows(BOOLEAN, Optional): Whether to skip rows that contain invalid data
Output: Returns insertion results with success/failure information
Get Dataset Info
bigquery.getDatasetInfo
Gets detailed information about a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId(TEXT, Required): The Google Cloud project IDdatasetId(TEXT, Required): The dataset ID to get information for
Output: Returns dataset information including creation time, location, and access controls
Common Use Cases
Data Management: Manage and organize your BigQuery data
Automation: Automate workflows with BigQuery
Reporting: Generate insights and reports
Integration: Connect BigQuery with other tools
Best Practices
Troubleshooting
Authentication failed
Verify your OAuth credentials
Rate limit exceeded
Reduce request frequency
Data not found
Check permissions and data availability
Connection timeout
Verify network connectivity
Support
For additional help with the BigQuery integration, contact [email protected]

